29 de septiembre de 2016

Seminario de introducción a la metagenómica

Os quiero anunciar que el 19 de Octubre impartiré el workshop titulado "Introduction to Bioinformatics applied to Metagenomics and Community Ecology" como parte de la conferencia Community Ecology for the 21st Century (Évora, Portugal).

Si estáis interesados, podéis contactar a los organizadores de la conferencia en el siguiente enlace, todavía hay plazas disponibles en el workshop.

Durante el curso presentaré la nueva herramienta AmpliTAXO para el análisis sencillo y online de datos de NGS de RNA ribosomal y otros marcadores.

El curso consistirá en 2 partes, la primera teórica donde se expondrán los retos de la metagenómica, las posibilidades de las nuevas técnicas de secuenciación y el funcionamiento de las herramientas de análisis más habituales (UPARSE, QIIME, MOTHUR). La segunda parte será práctica y consistirá en el análisis de datos metagenómicos reales obtenidos por NGS.

Podéis encontrar más información en inglés en mi nuevo blog y próximamamente en la página de la conferencia (pendiente de actualizar).

Os dejo un pequeño adelanto de los contenidos...

26 de septiembre de 2016

PHMMER como alternativa a BLASTP

Hola,
hoy quería hablar de herramientas de búsqueda de secuencias de proteína, uno de los caballos de batalla en nuestro trabajo. Es un tema ya tocado en este blog, por ejemplo cuando hablamos de deltablast y cs-blast, pero que sigue siendo de actualidad.

En esta ocasión ha sido un artículo de Saripella et al el que me lo ha vuelto a recordar, comparando algoritmos que usan perfiles de secuencia (CS-BLAST, HHSEARCH and PHMMER) con algoritmos convencionales (BLASTP, USEARCH, UBLAST and FASTA). Es uno de esos artículos aburridos pero necesarios, donde se compara por vía independiente la validez de los mejores algoritmos para esta tarea, y se guardan los tiempos de cálculo empleados por cada uno de ellos (usando un core de CPU), para anotar dominios conocidos de secuencias de SwissProt extraídos de 3 repositorios complementarios (Pfam, Superfamily y CATH):

Figura original de http://bioinformatics.oxfordjournals.org/content/32/17/2636.full.

En el artículo se calculan áreas bajo curvas ROC para caracterizar a los diferentes algoritmos. De todos ellos destacaría dos:

1) BLASTP por ser muy rápido y muy preciso, con áreas de 0.908, 0.857 y 0.878 para las 3 colecciones de dominios y el tiempo que se muestra en la gráfica para buscar 100 secuencias al azar.

2) PHMMER por ser marginalmente más lento que BLASTP pero con una ganancia en área de aproximadamente el 3% (0.922,0.903,0.903).

Además, PHMMER es muy fácil de usar. Lo descargas de http://eddylab.org/software/hmmer3/CURRENT/ y solamente necesitas un archivo FASTA con la(s) secuencia(s) problema y otro con un repositorio de secuencias como SwissProt:

$ hmmer-3.1b1-linux-intel-x86_64/src/phmmer problema.faa uniprot_sprot.fasta

Hasta pronto,
Bruno


2 de agosto de 2016

One-liner para calcular el N50 de un ensamblaje

Hola,
el estadístico N50 se usa a menudo para resumir a grosso modo un ensamblaje de secuencias, que generalmente es un fichero FASTA con una serie de contigs.
Modificando la definición de la wikipedia, N50 es la longitud de contigs tal que usando contigs de igual o mayor tamaño recuperamos la mitad de las bases de ese ensamblaje.

Figura tomada de http://bmpvieira.github.io/assembly14.

Hoy solamente quería compartir un comando one-liner de Perl que nos permite calcularlo:

$ perl -lne 'if(/^>(\S+)/){$h=$1} else {$l=length($_);$TL+=$l;$L{$h}+=$l} \
END{ foreach $s (sort {$L{$b}<=>$L{$a}} keys(%L)){ $t+=$L{$s}; \
if($t>$TL/2){ print "N50=$L{$s}";exit }}}' assembly.fasta

Cuidado al copiarlo al terminal desde el blog, mejor hacerlo línea a línea,
hasta pronto, Bruno

21 de julio de 2016

Las proteínas dúctiles

Hola,
ayer me regaló mi colega Inma Yruela una copia de su reciente libro "Las proteínas dúctiles". Es éste un libro de divulgación científica donde se explica de manera amena cómo las proteínas desordenadas, que Inma y yo estudiamos en las plantas (ver artículos 1 y 2), se salen del paradigma dominante "secuencia -> estructura 3D -> función", dado que desempeñan funciones importantes en los seres vivos, al parecer más en los eucariotas, sin tener una estructura definida en al menos una parte significativa de su secuencia.

Enlaces en CSIC y Amazon.

Desorden intrínseco de los extremos N y C terminal (en rojo) de la proteína supresora tumoral p53. Figura tomada de doi: 10.1146/annurev-biochem-072711-164947.




Si bien en la literatura está ya aceptado el término de desorden intrínseco (IDP en inglés) para definir a partes de estas proteínas, Inma propone reemplazarlo por proteínas dúctiles, que muestra de manera explícita que son regiones altamente moldeables en vez de destacar que carecen de órden. Os invito a que lo leáis porque es entretenido, por su exposición sencilla de las metodologías bioquímicas, biofísicas y bioinformáticas que se usan para estudiarlas, y por la descripción de los procesos biológicos en los que participan, por ejemplo su relación con el splicing. Lo más fascinante de estas proteínas es que seguramente nos falta mucho por saber de ellas,
un saludo,
Bruno

15 de julio de 2016

Cómo elegir software para simular reads

Hola,
si trabajas con cierta frecuencia con datos de ultrasecuenciación, es decir, con ficheros en formato FASTQ, a menudo te habrás encontrado con la situación de que te gustaría tener más datos para validar un programa publicado, o para diseñar tu propia tubería de análisis. Pues bien, una posibilidad real desde hace varios años es simular tus propios reads o lecturas a partir de secuencias genómicas del organismo en cuestión y parámetros como la tasa de error o la plataforma de secuenciación empleada. Como ocurre frecuentemente en Biología Computacional, hay una gran variedad de software publicado para esta tarea y elegir no es trivial. El diagrama a continuación es un árbol de decisión que os guiará para esta tarea:

Figura prestada de Escalona, Rocha & Posada (2016) doi:10.1038/nrg.2016.57 http://www.nature.com/nrg/journal/v17/n8/abs/nrg.2016.57.html

Buen finde,
Bruno