15 de agosto de 2019

progreso en la predicción estructural de proteínas

Hola,
hace unos meses contaba aquí el algoritmo AlphaFold para plegar proteínas por predicción de distancias entre residuos, que había escuchado de boca de uno de sus creadores. Hoy me he encontrado con la evaluación oficial de estructura terciaria del experimento CASP13, donde AlphaFold se destacó como mejor grupo predictor. La conclusión se resume en esta figura:

Fuente: https://onlinelibrary.wiley.com/doi/10.1002/prot.25787
Parece seguro decir que en CASP13 ha habido un salto en la calidad de las predicciones respecto a ediciones previas, a pesar de que la dificultad en esta edición es comparable a la anterior (Tabla 1 del artículo de Abriata et al de la figura). Los evaluadores achacanla mejoría precisamente a que más allá de predecir contactos, algunos de los mejores predictores, como A7D (AlphaFold), MULTICOM o RaptorX han empezado a predecir directamente distancias entre residuos, algo para la cual hacen falta alineamientos múltiples de secuencia muy profundos. Hasta luego,
Bruno


14 de agosto de 2019

modelado comparativo de proteínas multidominio

Hola,
en muchas ocasiones el modelado por homología o comparativo es  la única manera que tenemos trabajar con la estructura de una proteína que todavía no está en el Protein Data Bank. De hecho muchos artículos han sido publicados con figuras construidas sobre este tipo de modelos porque ayudan a comprender y poner en contexto tridimensional los resultados.

Interfaz entre dos monómeros modelada por homología, tomada de https://science.sciencemag.org/content/364/6445/1095.

Sin embargo, casi todas las herramientas que existen para modelar proteínas se han centrado históricamente en modelar dominios de proteína uno a uno, cuando la realidad es que muchas proteínas contienen varios dominios. Precisamente para modelar las conformaciones de este tipo de proteínas ha sido publicado recientemente https://zhanglab.ccmb.med.umich.edu/DEMO.

Diagrama de flujo de DEMO, tomado de https://www.pnas.org/content/116/32/15930.

Con la ayuda de DEMO podrás ensamblar dominios previamente modelados de dos en dos. El algoritmo consulta una colección no redundante de estructuras multidominio y optimiza las orientaciones entre dominios, además de que puede usar datos experimentales (cross-linking y crioEM) para guiar el proceso.

Un saludo, Bruno