Mostrando entradas con la etiqueta reads. Mostrar todas las entradas
Mostrando entradas con la etiqueta reads. Mostrar todas las entradas

24 de marzo de 2017

Apuntes sobre ensamblaje de genomas de plantas

Buenas, ayer asistimos Ernesto Igartua y yo al 6th CNAG Symposium on Genome Research: Agrigenomics, organizado por el Centro Nacional de Análisis Genómico en Barcelona, donde a menudo contratamos servicios de secuenciación.


Allí presentamos nuestro trabajo con cebada, junto a otros colegas que trabajan en ganadería, piscicultura y agricultura y utilizan herramientas de la genómica contemporánea.

Como curiosidades me apunté que André Eggen, de Illumina, mencionó que comparando razas bovinas habían imputado SNPs mezclando genotipos de baja densidad (chips de ~10K SNPs), con genomas completos, alcanzando millones de SNPs. Por cierto, habían usado el software propietario DeNovoMAGIC para ensamblar genomas bovinos.

Otra cosa fue que los peces que estudian Franscesc Piferrer y su grupo tienen un mecanismo de metilación en función de la temperatura para controlar la producción de hormonas sexuales, algo que me recordó mucho a la memoria de vernalización en las plantas.

Pero además de estas charlas, y de visitar las salas de secuenciación y de servidores del CNAG, tuvimos dos sesiones casi seguidas donde repasamos los últimos métodos de ensamblaje y validación de genomas de plantas de la mano de Tyler Alioto y Gareth Linsmith. Éstas son mis notas:

Detección de contaminantes en las lecturas/reads
kraken : https://ccb.jhu.edu/software/kraken

Ensamblajes híbridos y diploides, combinando lecturas cortas y largas y estrategias más complejas para genomas de individuos heterocigotos.
  • reads cortos, generalmente Illumina, de entre 100 y 300b, para alcanzar profunidades de al menos 30X en cada tipo de librería: 
    • paired-end (PE) con insertos de por ejemplo 400 y 730pb 
    • mate-pair (MP) con insertos de 4 y 8Kb para superar la longitud de la mayoría de secuencias repetidas
  • reads largos, generalmente PacBio o de Oxford Nanopore. EN CNAG usan secuenciadores minIon para producir lecturas de 11.5Kb de media, alcanzando longitudes máximas > 100kb. Gareth comentó que en manzano necesitaron 60x, y eso que era material doble haploide. Este tipo de reads requieren consensos calculados con software como Sparc, Racon o Nanopolish.
En cuanto a ensambladores, Tyler destacó DISCOVAR de novo y Platanus, más adecuado para individuos con moderadas tasas de sitios heterocigotos. Pero advirtió del efecto negativo que tiene la heterocigosis sobre N50. En cambio, Gareth mencionó que primero ensambla las lecturas cortas con SOAPdenovo sin resolver las burbujas de Bruijn para luego luego combinar los reads largos con DBG2OLC y CANU.

Estrategias complementarias de ensamblaje
Datos de RNAseq para scaffolding con AGOUTI y Rascaf.

Pools de fósmidos como los empleados en el genoma de la ostra.
Mapas ópticos con enzimas nickasas que cortan cada 10Kb, con Bionano.
Dovetail genomics, aproximación basada en Hi-C.

Herramientas para corregir y finalizar genomas
PILON : https://github.com/broadinstitute/pilon/wiki
BESST : https://github.com/ksahlin/BESST

Estrategias para evaluar y validar genomas
Aparte del criterio clásico de sintenia respecto a especies cercanas, ambos mencionaron los problemas de evaluar un ensamblaje solamente por su N50 sin mirar por ejemplo los genes core anotados, por ejemplo con BUSCO, el sucesor de CEGMA. Gareth mencionó ALE para calcular la verosimilitud de un ensamblaje dadas las librerías de secuencias y KAT para comparar los k-meros originales de los reads con los del ensamblaje, que deberían coincidir, o para determinar la fracción de sitios heterocigotos:

Frecuencias de k-meros de los genotipos B73 y Mo17 de maíz, tomada de http://www.nature.com/articles/srep42444.

Casi se me olvida mencionar la comparación entre el mapa físico y el genético como criterio de calidad, muy útil en el genoma de manzano o en el de la cebada:

Comparación entre las posiciones de marcadores en una población de mapeo en cebada y sus posiciones en los mapas físico IBSC y POPSEQ de cebada, tomada de http://link.springer.com/article/10.1007%2Fs11032-015-0253-1.


Hasta  pronto,
Bruno















15 de julio de 2016

Cómo elegir software para simular reads

Hola,
si trabajas con cierta frecuencia con datos de ultrasecuenciación, es decir, con ficheros en formato FASTQ, a menudo te habrás encontrado con la situación de que te gustaría tener más datos para validar un programa publicado, o para diseñar tu propia tubería de análisis. Pues bien, una posibilidad real desde hace varios años es simular tus propios reads o lecturas a partir de secuencias genómicas del organismo en cuestión y parámetros como la tasa de error o la plataforma de secuenciación empleada. Como ocurre frecuentemente en Biología Computacional, hay una gran variedad de software publicado para esta tarea y elegir no es trivial. El diagrama a continuación es un árbol de decisión que os guiará para esta tarea:

Figura prestada de Escalona, Rocha & Posada (2016) doi:10.1038/nrg.2016.57 http://www.nature.com/nrg/journal/v17/n8/abs/nrg.2016.57.html

Buen finde,
Bruno