13 de abril de 2020

Redes neuronales profundas

Hola, escribo esto durante la cuarentena del COVID-19, el lunes que muchos trabajadores vuelven al trabajo en España entre dudas por la seguridad pero acuciados por la economía.

En esta entrada y posiblemente otras posteriores me gustaría visitar el aprendizaje automático por medio de redes neuronales profundas, aquellas que tienen al menos 3 capas ocultas.

Es un tema apasionante y que ha evolucionado sin pausa en los últimos 20 años. Sin embargo, aunque diseñar y entrenar redes es complejo, están de moda y no es difícil leer por ahí que de la mano del aprendizaje profundo (Deep Learning, DL) podremos resolver cualquier problema que nos propongamos. Yo no soy experto, pero llevo leyendo sobre redes neuronales desde que escuché hablar de ellas a mi profesor de la Complutense Rafael Lahoz Beltrá y más tarde en la asignatura de aprendizaje automático de la UNED. Además, he podido verlas en acción por sus aplicaciones en bioinformática estructural.

Utilizaré figuras y contenidos que he ido leyendo estos días en el libro Deep Learning Illustrated (2019), cuyo autor principal es John Krohn:
cover.jpeg
https://www.deeplearningillustrated.com

En este libro la ilustradora Aglaé Bassens pone cara a los protagonistas de la historia, como este Santiago Ramón y Cajal y sus dibujos de neuronas en cortes de tejidos:
https://www.deeplearningillustrated.com
En realidad las redes neuronales son estructuras de datos hechas a semejanza de las observaciones de Cajal y otros neurocientíficos que estudiaron cómo las neuronas se tocan entre sí y reciben información de múltiples axones. Aunque no sepamos bien cómo la corteza cerebral procesa la información, su organización en capas de neuronas ha servido de base a la creación de redes neuronales artificiales.

La red neuronal que más he utilizado en mi trabajo como biólogo computacional es PSIPRED, que sirve para la predicción de estructura secundaria de proteínas a partir de información evolutiva:

Tomada de Jones DT (1999) J.Mol.Biol., 292(2):195-202

Cómo se ve en la figura, PSIPRED está compuesta por dos redes consecutivas, cada una con 3 capas, la de input, la oculta y la de output. De acuerdo con la definición de Krohn, ninguna de estas redes sería profunda, pues no cumplen el requisito de tener al menos 3 capas ocultas. Éste es el principal desarrollo desde 1999, ahora las redes son mas profundas y eso ha permitido en muchos casos tratar relaciones no lineales y abstractas:

Arquitectura de una red neuronal profunda, figura 4.2 de Krohn J (2019) Deep Learning Illustrated
El próximo día más, cuidáos,
Bruno

Siguiente entrada: Tipos de neuronas en redes profundas

1 comentario: